Cyclosporine-immunosuppression does not affect survival of transplanted skin-derived precursor Schwann cells in the injured rat spinal cord.

نویسندگان

  • Zacnicte May
  • Abel Torres-Espín
  • Ana M Lucas-Osma
  • Nicholas J Batty
  • Pamela Raposo
  • Keith K Fenrich
  • Morgan G Stykel
  • Tobias Führmann
  • Molly Shoichet
  • Jeff Biernaskie
  • Karim Fouad
چکیده

A major goal of Schwann cell (SC) transplantation for spinal cord injury (SCI) is to fill the injury site to create a bridge for regenerating axons. However, transplantation of peripheral nerve SCs requires an invasive biopsy, which may result in nerve damage and donor site morbidity. SCs derived from multipotent stem cells found in skin dermis (SKP-SCs) are a promising alternative. Regardless of source, loss of grafted SCs post-grafting is an issue in studies of regeneration, with survival rates ranging from ∼1 to 20% after ≥6 weeks in rodent models of SCI. Immune rejection has been implicated in these low survival rates. Therefore, our aim was to explore the role of the immune response on grafted SKP-SC survival in Fischer rats with a spinal hemisection injury. We compared SKP-SC survival 6 weeks post-transplantation in: (I) cyclosporine-immunosuppressed rats (n=8), (II) immunocompetent rats (n=9), and (III) rats of a different sub-strain than the SKP-SC donor rats (n=7). SKP-SC survival was similar in all groups, suggesting immune rejection was not a main factor in SKP-SC loss observed in this study. SKP-SCs were consistently found on laminin expressed at the injury site, indicating detachment-mediated apoptosis (i.e., anoikis) might play a major role in grafted cell loss.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury.

Transplantation of exogenous cells is one approach to spinal cord repair that could potentially enhance the growth and myelination of endogenous axons. Here, we asked whether skin-derived precursors (SKPs), a neural crest-like precursor that can be isolated and expanded from mammalian skin, could be used to repair the injured rat spinal cord. To ask this question, we isolated and expanded genet...

متن کامل

Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury.

Spinal cord injury (SCI) results in loss of oligodendrocytes demyelination of surviving axons and severe functional impairment. Spontaneous remyelination is limited. Thus, cell replacement therapy is an attractive approach for myelin repair. In this study, we transplanted adult brain-derived neural precursor cells (NPCs) isolated from yellow fluorescent protein-expressing transgenic mice into t...

متن کامل

Schwann cells generated from neonatal skin-derived precursors or neonatal peripheral nerve improve functional recovery after acute transplantation into the partially injured cervical spinal cord of the rat.

The transplantation of Schwann cells (SCs) holds considerable promise as a therapy for spinal cord injury, but the optimal source of these cells and the best timing for intervention remains debatable. Previously, we demonstrated that delayed transplantation of SCs generated from neonatal mouse skin-derived precursors (SKP-SCs) promoted repair and functional recovery in rats with thoracic contus...

متن کامل

[Schwann cells in therapy of spinal cord injuries].

Schwann cells (SC) have a special activity in the repair processes after injury of the nervous system because of the capability of differentiation, migration, proliferation and myelinization of axons. They enhance production of numerous neurotrophic factors, thus creating a permissive environment for axonal regeneration. Experimental studies using SC in neuronal transplants showed that these ce...

متن کامل

Mesenchymal Stem Cells as an Alternative for Schwann Cells in Rat Spinal Cord Injury

Background: Spinal cord has a limited capacity to repair therefore, medical interventions are necessary for treatment of injuries. Transplantation of Schwann cells has shown a great promising result for spinal cord injury (SCI). However, harvesting Schwann cell has been limited due to donor morbidity and limited expansion capacity. Furthermore, accessible sources such as bone marrow stem cells ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience letters

دوره 658  شماره 

صفحات  -

تاریخ انتشار 2017